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Abstract. We use the persistent homology of Edelsbrunner, Letscher,
and Zomorodian to associate to a signal an invariant called a barcode
which consists of a set of intervals of real numbers. The collection of all
barcodes may be equipped with a metric, allowing us to calculate the
distances between these objects. This provides a topological mechanism
to distinguish signals. We present the results of experiments on human
speech signals where the barcodes associated to eight different sounds
are calculated and the distances among them computed. The resulting
point clouds in “barcode space” are studied; often such a cloud has eight
components, one for each sound. This technique may therefore be useful
in speech recognition problems.

1. Introduction

As computing capabilities have improved, it has become more practical to
analyze large data sets. A relatively new, and increasingly popular, tool for
studying the structure of large point clouds is persistent homology [8],[11].
Here is one possible scenario. Suppose one has a collection X of points in
some metric space (usually a Euclidean space, but not necessarily). Let
ε > 0 and construct a space R(X, ε) by placing a ball of radius ε around
each point in X. If ε is small, then R(X, ε) is simply a disjoint collection of
balls, but as ε grows, the space R(X, ε) may have more interesting topology.
Also, if ε < ε′, there is an inclusion R(X, ε) → R(X, ε′). One may then
look for geometric features in the spaces R(X, ε). Algebraic topology is the
mathematical formalism developed to quantify such features. In particular,
the homology groups of the spaces R(X, ε) are vector spaces which give a
measure of the number of distinct features in the space; such objects are
called homology classes. For each i ≥ 0 and a field k, one then gets a direct
system of homology groups {Hi(R(X, ε); k)}ε>0 measuring the i-dimensional
geometric classes. Some homology classes live over only a small interval of
ε-values, while others persist for long periods. The latter are more likely to
correspond to real homological features in X; we are therefore interested in
measuring these persistent classes as a means to find structure in point cloud
data sets. The persistence of the homology classes is neatly encapsulated in
a structure called a barcode, which is a collection of intervals measuring the
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longevity of the various classes. This approach has been used to study the
structure of data sets arising in shape recognition [4], natural images [3],
speech recognition [1], and wheeze detection [9].

This technique of growing ε-balls is difficult to automate, however, so we
model the space underlying the data by an object called a simplicial complex
(see Section 2 below). These are easily stored in a computer, and the linear
algebra calculations required for computing their homology can be carried
out efficiently. Moreover, it is not difficult to construct a whole family of
complexes to model the data, in a way similar to growing ε-balls, so that we
may compute the persistent homology of the family and use the associated
barcode to infer features in the data.

In this paper, we apply this technique to the following problem. We con-
sider a collection of human speech signals, eight different phones consisting
of three vowels, two nasal sounds, and three “noisy” sounds. Ideally, we
would like to be able to distinguish these signals in some fashion. The ap-
proach we take is to consider a short segment of the signal, view the graph as
a one-dimensional simplicial complex, define an interesting nested collection
of subcomplexes, and then compute the zero-dimensional persistent homol-
ogy of this family. This gives a means to associate to a signal a barcode.
For each sound, we do this procedure on 100 different segments; the result
is a collection of 800 barcodes. In turn, these barcodes are points in a space,
called barcode space, which is equipped with a distance function. We then
study the topology of this point cloud in barcode space and show that it
often has eight components, one for each sound. This leads to a possible
algorithm for speech recognition.

This paper is organized as follows. Section 2 contains a brief introduction
to simplicial complexes and their homology. In Section 3 we define persistent
homology and the metric on barcode space. We discuss the procedure for
associating a barcode to a signal in Section 4 and give examples of this for
human speech signals in Section 5. This section also includes an analysis of
the structure of the resulting point clouds in barcode space.

2. Simplicial Homology

An abstract simplicial complex K is specified by the following data:

• A vertex set V ;
• A rule specifying when a p-simplex σ = [v0v1 . . . vp] belongs to K;

here the vertices v0, v1, . . . , vp are distinct elements of V ;
• Each p-simplex σ has p + 1 faces which are the (p − 1)-simplices

obtained by deleting one of the vertices of σ. The membership rule
has the property that if σ belongs to K, then all of its faces belong
to K.

Given a simplicial complex K, we define a collection of vector spaces,
which tell us the number of holes of various dimensions in K, as follows.
Let k be the field of 2 elements. The i-th homology group, Hi(K; k), will
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measure the number of (i + 1)-dimensional voids, and it is constructed as
follows. Let Ci(K; k) be the k-vector space with basis the set of i-simplices
in K. If σ = [v0v1 · · · vi] is such a simplex, we define ∂σ to be the element
of Ci−1(K; k) given by the formula

∂σ =

i∑
j=0

(−1)j [v0v1 · · · v̂j · · · vi],

where [v0v1 · · · v̂j · · · vi] is the (i−1)-simplex with vertices {v0, . . . , vi}−{vj}.
Note that in the field of 2 elements we have −1 = 1, but we present the
definition this way because it works over any field (e.g., the real numbers).
We may extend this linearly to Ci(K; k) to obtain a linear transformation

∂i : Ci(K; k)→ Ci−1(K; k).

It is a straightforward exercise to show that ∂i ◦ ∂i+1 = 0 and hence
im(∂i+1) ⊆ null(∂i) (null(∂i) denotes the null space of the map ∂i). We
then define the i-th homology group as

Hi(K; k) = null(∂i)/im(∂i+1).

Elements of null(∂i) are called cycles; the set of all such is denoted by
Zi. Elements of im(∂i+1) are called boundaries, denoted by Bi. Homology
measures how many cycles are inequivalent and essential in the sense that
they do not bound an object of higher dimension.

For computational purposes, we are interested in the Betti numbers, βi,
defined as βi = dimkHi(K; k). Note that we have the simple equation

βi = dimk Zi − dimk Bi+1

= dimk Ci − rank ∂i − rank ∂i+1.

This therefore reduces the calculation of Betti numbers to computing ranks
of matrices over the field k.

As a simple example, consider the tetrahedron T . There are four vertices
v0, v1, v2, v3; six edges [v0v1], [v0v2], [v0v3], [v1v2], [v1v3], [v2v3]; and four
faces [v0v1v2], [v0v1v3], [v0v2v3], [v1v2v3]. The groups Ci(T ; k) are then

C0(T ; k) = k4 C1(T ; k) = k6 C2(T ; k) = k4

and the maps ∂i are given by ∂0 = 0, ∂i = 0, i ≥ 3, and

∂1 =


−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1


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∂2 =


1 1 0 0
−1 0 1 0
0 −1 −1 0
1 0 0 1
0 1 0 −1
0 0 1 1

 .

An easy calculation shows that rank ∂1 = 3, rank ∂2 = 3, and therefore that

H0(T ; k) = k ⇒ β0 = 1

H1(T ; k) = 0 ⇒ β1 = 0

H2(T ; k) = k ⇒ β2 = 1.

A basis for H0(T ; k) is [v0], and for H2(T ; k), [v0v1v2]− [v0v1v3] + [v0v2v3]−
[v1v2v3]. There are three linearly independent 1-cycles—the boundaries of
the four triangles form a linearly dependent set of dimension 3—but each is
also a boundary, filled in by the interior of the triangle. Geometrically, the
fact that β0 = 1 means that T is connected; β1 = 0 means that every loop
in T bounds a disc; β2 = 1 means that T contains a closed surface, namely
T itself, that is not filled in by a 3-dimensional object.

Homology groups are topological invariants; that is, if spaces X and Y are
homotopy equivalent (one may be deformed to the other), then H•(X; k) ∼=
H•(Y ; k). They therefore provide a means to distinguish spaces, although
it is possible for topologically distinct spaces to have the same homology
groups.

3. Filtrations and Barcodes

An increasingly popular technique for analyzing data sets topologically
is the persistent homology of Edelsbrunner, Letscher, and Zomorodian [8].
The idea is as follows. Suppose we are given a finite nested sequence of finite
simplicial complexes

KR1 ⊂ KR2 ⊂ · · · ⊂ KRp ,

where the Ri are real numbers R1 < R2 < · · · < Rp. For each homological
degree ` ≥ 0, we then obtain a sequence of homology groups and induced
linear transformations

H`(KR1)→ H`(KR2)→ · · · → H`(KRp).

Since the complexes are finite, each H`(KRi) is a finite-dimensional vector
space. Thus, there are only finitely many distinct homology classes. A
particular class z may come into existence in H`(KRs), and then one of
two things happens. Either z maps to 0 (i.e., the cycle representing z gets
filled in) in some H`(KRt), Rs < Rt, or z maps to a nontrivial element in
H`(KRp). This yields a barcode, a collection of interval graphs lying above
an axis parametrized by R. An interval of the form [Rs, Rt] corresponds to a
class that appears at Rs and dies at Rt. Classes that live to KRp are usually
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Figure 1. The barcodes for a filtration of the tetrahedron.

represented by the infinite interval [Rs,∞) to indicate that such classes are
real features of the full complex KRp .

As an example, consider the tetrahedron T with filtration

T0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ T5 = T

defined by T0 = {v0, v1, v2, v3}, T1 = T0 ∪ {all edges}, T2 = T1 ∪ [v0v1v2],
T3 = T2 ∪ [v0v1v3], T4 = T3 ∪ [v0v2v3], and T5 = T . The barcodes for this
filtration are shown in Figure 1. Note that initially, there are 4 components
(β0 = 4), which get connected in T1, when 3 independent 1-cycles are born
(β1 = 3). These three 1-cycles die successively as triangles get added in
T2, T3, and T4. The addition of the final triangle in T5 creates a 2-cycle
(β2 = 1). We see that the classes that live forever yield the Betti numbers
calculated in the previous section.

For analyzing point cloud data, one needs a simplicial complex modeling
the underlying space. Since it is impossible to know a priori if a complex
is “correct”, one builds a nested family of complexes approximating the
data cloud, computes the persistent homology of the resulting filtration, and
looks for homology classes that exist in long sections of the filtration. Since
we will only be interested in computing the number of components of the
cloud of barcodes we construct, we will be able to use traditional clustering
techniques. For a general discussion of constructions of complexes used to
analyze data (in particular the popular witness complex construction), see
[7],[5].

3.1. Barcode space. The collection B of all barcodes itself forms a space
which we call barcode space. This is a metric space where the distance
function d : B × B → R is defined as follows. For a pair of intervals I, J ,
we define their dissimilarity δ(I, J) to be the measure of their symmetric
difference: δ(I, J) = µ(I ∪ J − I ∩ J), where µ denotes one-dimensional
measure. Note that δ(I, J) may be infinite. Given barcodes S1, S2 ∈ B,
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a matching is a set M(S1, S2) ⊆ S1 × S2 so that any interval in S1 or S2
occurs in at most one pair (I, J). Denote the intervals in S1 and S2 that
are matched in M by M1 and M2, respectively. Let N be the non-matched
intervals. For a matching M , define the distance between S1 and S2 relative
to M to be the sum

DM (S1, S2) =
∑

(I,J)∈M

δ(I, J) +
∑
L∈N

µ(L).

The (pseudo)-metric d is then defined by

d(S1, S2) = min
M

DM (S1, S2),

where the minimum is taken over all matchings of S1 and S2.
At first glance, this definition may seem computational infeasible. How-

ever, we may convert it to another question that has fast solutions. Note
that δ(I, J) = µ(I) + µ(J) − 2µ(I ∩ J). Define the similarity of S1 and S2
with respect to M to be

SM (S1, S2) =
∑

(I,J)∈M

µ(I ∩ J)

=
1

2

(∑
S1

µ(I) +
∑
S2

µ(J)−DM (S1, S2)

)
.

The problem of minimizing DM is therefore equivalent to maximizing SM
and this may be recast as a question in graph theory. Given barcodes S1 and
S2, define a weighted bipartite graph G(V,E) with vertex set V = S1 ∪ S2.
Place an edge in E for each pair (I, J) ∈ S1 × S2 with weight µ(I ∩ J).
Maximizing SM is then equivalent to finding a maximal weight matching
in this graph. There are efficient algorithms for achieving this (e.g. the
Hungarian algorithm [10] with complexity O(|V ||E|)).

4. Barcodes for Signals via Sweeping

Suppose f : I → R is a continuous real-valued function defined on the
closed interval I. We may then define an increasing filtration {Iα}α∈R of I
by setting Iα = f−1((−∞, α]), as α varies over R. A useful visualization of
this is to imagine a horizontal line in the plane moving upward across the
graph of f . As α increases, the sets Iα get larger until eventually the entire
graph is swept out. We call this the sweep filtration of the interval I.

Since I is a contractible one-dimensional space, the only interesting ho-
mology groups associated to the sets Iα are the various H0(Iα). Call such
a function tame if it has only a finite number of local maxima and minima.
Observe that when the parameter α passes a local minimum a new compo-
nent is added and β0 increases by 1. When a local maximum is passed, two
components merge and β0 decreases by 1. What we are really doing here
is pairing up local minima and maxima as follows: when a local maximum
is reached, it is paired with the local minimum which entered the filtration
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Figure 2. A tame function f and the barcode associated
to the sweep filtration.

most recently and is still unpaired. Those local extrema which seem to give
the true shape of the graph persist for long periods while those that come
from small perturbations persist for short intervals. See Figure 2 for an
example.

Now suppose we are given a signal as a time series. Let f(t) denote the
amplitude of the wave at time t. Since we are given a discrete set of points
(ti, f(ti)), 0 ≤ i ≤ n, we may view this as a map f : K → R where K is the
one-dimensional simplicial complex with a vertex vi, 0 ≤ i ≤ n and an edge
joining vi with vi+1. This is simply a triangulation of an interval I. The
function f is then given as the piecewise linear map interpolating between
the values f(ti). If α is a real number, set Kα to be the subcomplex of K
generated by f−1((−∞, α]). See Figure 3 for an example.

We therefore have a mechanism for assigning a barcode to a signal. View-
ing these as points in the barcode space B, we may then calculate the dis-
tance between barcodes and hopefully distinguish between signals in this
way.

Note that the metric d is unstable in the following sense. Suppose we
have a signal f and its barcode Bf . A small perturbation f∗ will yield a
new barcode Bf∗ with many very short bars. One would like to know that
d(Bf , Bf∗) is small, but it is clear that it is possible to take a very small
perturbation f∗ so that the number of extra bars in Bf∗ is very large. These
new intervals will be unmatched in calculating d(Bf , Bf∗), and even though
they are all very short, their lengths could add up to be very large.

There are other metrics available, for example the bottleneck metric of
[6]. This is a stable metric in the sense that functions that are close have
barcodes that are close in this metric. We have performed the calculations
of Section 5 below with this metric, but the results are not as good. That
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Figure 3. A signal as a time series and the associated
subcomplexes Kα; the top row has the signal, Kα1 , and Kα2 ,
while the bottom row has Kα3 , Kα5 , and Kα6 . The values of
β0 are 1, 1, 2, 3, 2, 2, respectively.

is, we obtained sharper clustering with the metric d. The reasons for this
are unclear, but we will present an analysis in [2].

5. Point Clouds in Barcode Space from Human Speech Signals

We obtained a collection of speech signals from three individuals, labeled
by their initials: cm, if, mc. There were eight different sounds: three vowels
(aa as in the Spanish word casa, ae as in safe, and eh as in bed), two nasals
(m and n), and three “noisy” sounds (f, sh, and z). The sample rate was
22050 samples per second. For each sound, we selected 100 segments. For the
periodic sounds (vowels and nasals) each segment consisted of a single period
(approximately 130 sample points) and for the noisy sounds we selected
segments of length equal to the average of the lengths of the periodic sounds.
Examples of the segments for speaker cm are shown in Figure 4. For each
segment, we calculated the β0-barcode obtained by filtering the signal by
the sweeping procedure described in Section 4.

For each speaker, this process yielded a point cloud in barcode space con-
sisting of 800 points. We then computed the 800× 800 matrix of distances
between pairs of these points. This was computationally expensive—speaker
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Figure 4. Segments of the signals from speaker cm. Top
row: aa, ae, eh, f; Bottom row: m, n, sh, z.

Figure 5. Clustering dendrogram for speaker cm.

mc’s matrix required approximately 36 hours of CPU time. We note, how-
ever, that the calculation was done in MATLAB on a laptop running Win-
dows XP. Calculations in [2], done in C++, are significantly faster. The
experiment is then to study the structure of this point cloud in B. One
would hope that it consists of eight components, one for each sound.

5.1. The components of speech data point clouds. To analyze the
point clouds in B, we use standard hierarchical clustering. The associated
dendrograms are shown in Figures 5, 6, and 7 for speakers cm, if, and mc,
respectively.
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Figure 6. Clustering dendrogram for speaker if.

Figure 7. Clustering dendrogram for speaker mc.

Let us examine these dendrograms. For speaker cm, we have 9 very
distinct components, with sound z breaking into 2 clusters. The larger of
these has 60 points in it. Note, however, that the nasal sounds (m and
n) are quite close together, as are the three vowel clusters. Furthermore,
the clusters for f, sh, and z also join together before merging with other
components. So we see a sharp divide between the three classes of sounds,
and within each class, for speaker cm at least, definite clustering occurs for
each sound.

Consider next speaker if. Those clusters labeled with an asterisk are the
largest for a particular sound. Note again that the three classes of sounds
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aa ae eh f m n sh z
cm .01 .32 .93 .90 .52 .27 .48 .81
if .98 .98 .63 .86 .51 0 .47 .83
mc .99 .71 .76 .32 .30 .82 .68 .83

Table 1. Error rates for the proposed recognition algorithm.

tend to bunch together, and inside each of these, individual sounds form
large clusters of their own. Observe also that sound sh forms two rather
large clusters away from the other sounds.

Finally, we study speaker mc. Again, we see that the noisy sounds tend
to cluster together, with each sound forming its own component (more or
less). The nasals tend to cluster near each other, as do aa and ae. The
component for eh, however, is closer to the nasals, and merges with them
before the other vowels.

In all three cases, though, we see clear evidence of clustering among the
individual sounds.

5.2. A proposed algorithm. The existence of 8 large components in the
point clouds suggests the following procedure for speech recognition.

(1) Given a signal, select a short sample (one period of a vowel, for
example).

(2) Compute the barcode S associated to the sweep filtration of the
signal.

(3) Choose a representative barcode from the largest cluster in B for
each sound and calculate the distance from S to each of these.

(4) The barcode closest to S is likely the same sound.

We ran experiments to test the error rate for this procedure. For each
speaker and each sound, we selected a representative at random from each
large cluster. Given a sound, we selected 100 samples and computed the
distances from each sample to each of the representative signals. The results
are shown in Table 1.

Of course, this is discouraging news. The best results were for sound aa
for speaker cm and sound n for speaker if. Otherwise, the algorithm almost
always fails. The good news is that when a sound is incorrectly identified,
it is usually mistaken for a sound in its same class; that is, a vowel is close
to another vowel, nasals may be mistaken for each other, and noisy sounds
may be garbled.

One remedy for this is to choose more representatives from each cluster
so that a particular signal has a chance to be close to a correct sound. The
downside of this is that more storage space is required, and the computation
time to identify a sound will increase. Perhaps a more judicious choice of
representative barcodes would provide a fix. And, while we assert that the
metric d provides more recognizable clusters, it may be better to use another
metric (such as the bottleneck distance) to test the algorithm.
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